Friday, October 2, 2015

Page 462

Problem 59

Problem. Let V_{1} and V_{2} be the volumes of the solids that result when the plane region bounded by $y=1 / x, y=0, x=\frac{1}{4}$, and $x=c$ (where $c>\frac{1}{4}$) is revolved about the x-axis and the y-axis, respectively. Find the value of c for which $V_{1}=V_{2}$.

Solution.

$$
\begin{aligned}
V_{1} & =\int_{1 / 4}^{c} 2 \pi \cdot \frac{1}{x^{2}} d x \\
& =-2 \pi\left[\frac{1}{x}\right]_{1 / 4}^{c} \\
& =-2 \pi\left(\frac{1}{c}-4\right) \\
& =2 \pi\left(4-\frac{1}{c}\right) \\
V_{2} & =\int_{1 / 4}^{c} 2 \pi x\left(\frac{1}{x}\right) d x \\
& =2 \pi \int_{1 / 4}^{c} d x \\
& =2 \pi[x]_{1 / 4}^{c} \\
& =2 \pi\left(c-\frac{1}{4}\right) .
\end{aligned}
$$

Now solve the equation $V_{1}=V_{2}$ for c.

$$
\begin{aligned}
2 \pi\left(4-\frac{1}{c}\right) & =2 \pi\left(c-\frac{1}{4}\right) \\
4-\frac{1}{c} & =c-\frac{1}{4} \\
16 c-4 & =4 c^{2}-c \\
4 c^{2}-17 c+4 & =0 \\
(4 c-1)(c-4) & =0 .
\end{aligned}
$$

The solutions are $c=\frac{1}{4}$ and $c=4$. We were told that $c>\frac{1}{4}$, so the solution is $c=4$.

Problem 60

Problem. The region bounded by $y=r^{2}-x^{2}, y=0$, and $x=0$ is revolved about the y-axis to form a paraboloid. A hole, centered along the axis of revolution, is drilled through this solid. The hole has a radius $k, 0<k<r$. Find the volume of the resulting ring (a) by integrating with respect to x and (b) by integrating with respect to y.

Solution. (a) The graph (with, e.g., $r=2$ and $k=1$) is

The figure is rotated about the y-axis, so if we integrate with respect to the x-axis, then we must use the shell method. The radius is x and the height is $r^{2}-x^{2}$.

$$
\begin{aligned}
V & =\int_{k}^{r} 2 \pi x\left(r^{2}-x^{2}\right) d x \\
& =2 \pi \int_{k}^{r}\left(r^{2} x-x^{3}\right) d x \\
& =2 \pi\left[\frac{1}{2} r^{2} x^{2}-\frac{1}{4} x^{4}\right]_{k}^{r} \\
& =2 \pi\left(\left(\frac{1}{2} r^{4}-\frac{1}{4} r^{4}\right)-\left(\frac{1}{2} r^{2} k^{2}-\frac{1}{4} k^{4}\right)\right) \\
& =\frac{\pi}{2}\left(r^{4}-2 r^{2} k^{2}+k^{4}\right) \\
& =\frac{\pi}{2}\left(r^{2}-k^{2}\right)^{2} .
\end{aligned}
$$

(b) To integrate with respect to y, we must use the washer method. The inner radius is $R_{1}=k$ and the outer radius is $R_{2}=\sqrt{r^{2}-y}$. The limits of integration are
from 0 to $r^{2}-k^{2}$.

$$
\begin{aligned}
V & =\int_{0}^{r^{2}-k^{2}} \pi\left(\left(r^{2}-y\right)-k^{2}\right) d y \\
& =\pi\left[\left(r^{2}-k^{2}\right) y-\frac{1}{2} y^{2}\right]_{0}^{r^{2}-k^{2}} \\
& =\pi\left(\left(r^{2}-k^{2}\right)^{2}-\frac{1}{2}\left(r^{2}-k^{2}\right)^{2}\right) \\
& =\frac{\pi}{2}\left(r^{2}-k^{2}\right)^{2}
\end{aligned}
$$

Problem 61

Problem. Consider the graph of $y^{2}=x(4-x)^{2}$. Find the volumes of the solids that are generated when the loop of this graph is revolved about (a) the x-axis, (b) the y-axis, and (c) the line $x=4$.

Solution. Solutions coming soon...
The answers are
(a) $\frac{512 \pi}{3}$
(b) $\frac{2048 \pi}{35}$
(c) $\frac{8192 \pi}{105}$

